Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here, we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3 dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.more » « less
-
Abstract The ability to form reconstructions beyond line-of-sight view could be transformative in a variety of fields, including search and rescue, autonomous vehicle navigation, and reconnaissance. Most existing active non-line-of-sight (NLOS) imaging methods use data collection steps in which a pulsed laser is directed at several points on a relay surface, one at a time. The prevailing approaches include raster scanning of a rectangular grid on a vertical wall opposite the volume of interest to generate a collection of confocal measurements. These and a recent method that uses a horizontal relay surface are inherently limited by the need for laser scanning. Methods that avoid laser scanning to operate in a snapshot mode are limited to treating the hidden scene of interest as one or two point targets. In this work, based on more complete optical response modeling yet still without multiple illumination positions, we demonstrate accurate reconstructions of foreground objects while also introducing the capability of mapping the stationary scenery behind moving objects. The ability to count, localize, and characterize the sizes of hidden objects, combined with mapping of the stationary hidden scene, could greatly improve indoor situational awareness in a variety of applications.more » « less
-
null (Ed.)Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions.more » « less
An official website of the United States government
